Inside the Garage Labs of DIY Gene Hackers


When the future of genetic engineering arrived on Sebastian Cocioba’s doorstep, it was affixed to the back of a postcard from Austria with a little bit of packing tape.

Cocioba is a 25-year-old college dropout whose primary interest is tinkering with plant genetics in a lab he cobbled together from eBay. The lab is located in the spare bedroom of his parent’s lavish apartment in Long Island City, across the river from Manhattan. A few months ago, an internet friend from an online bio-hacking forum had sent him the lab’s latest addition: attached to that postcard was Crispr-Cas9.

Sebastian Cocioba with the Crispr protein shipped to him in the mail by a friend.

Sebastian Cocioba with the Crispr protein shipped to him in the mail by a friend.

Deposited onto a flimsy fragment of filter paper and wrapped in plastic, it looked like a tab of acid. But inside that crude packaging was the key to an incredibly precise DNA-editing technology that will revolutionize the world.

Crispr—a memorable acronym for the mouthful, “clustered regularly-interspaced short palindromic repeats”—gives scientists an unprecedented ability to decrypt and reorder genes, opening up a dazzling and terrifying universe of possibilities. This year, a top national security official called gene-editing a weapon of mass destruction—along with nuclear detonation, chemical weapons and cruise missiles—because it could be used to create “potentially harmful biological agents or products.”

Crispr is every sci-fi future that we have ever dreamed about or feared: designer babies, unlimited energy, and the end of genetic diseases like Alzheimer’s.

Researchers have used Crispr to make wheat resistant to a damaging blight; to alter 62 pig genes so they could, theoretically, grow human organs for transplant; and to edit a human embryo to repair a gene that causes a fatal blood disorder. But the biggest bonus in the eyes of DIY biohackers is that it makes at-home genetic experimentation astonishingly accessible.

Sebastian Cocioba in his parents living room, in which dozens of plants he has grown help mask the scent of his parents' smoking.

Sebastian Cocioba in his parents living room, in which dozens of plants he has grown help mask the scent of his parents’ smoking.

“If the genome was a book and you wanted to sneak a sentence into the middle and make it look like it was there the whole time, Crispr can do that,” Cocioba explained, vibrating with enthusiasm as he held between his thumb and forefinger a plastic-wrapped Pandora’s box.

Crispr, which arrived on the science scene in 2012, has made genetic engineering simpler, faster, and cheaper—and galvanized the movement of DIY scientists who want to try their hand at genetically modifying plants, insects, animals, and, someday, maybe even humans.

David Ishee, a 30-year-old Mississippi resident who never attended college, first started doing at-home experiments after seeing kits to make glowing plants online.

“My little lab is in my shed,” Ishee told me. “I have all the typical equipment and chemicals for genetic engineering and I built it for less than $1,000.”

Crispr, he said, will vastly expand the kind of experiments he’s able to do at home. Software like DeskGen already allows anyone to easily design custom DNA sequences and then have them delivered to their doorstep for a few hundred dollars. Crispr will allow Ishee to then insert those genes into a host organism with relative ease.

“Crispr is great because it’s simple and cheap to use for precision genomic insertion, editing or deletion with a lot of different kinds of cells,” he told me. “That gives me a lot of new options. Up until now, all the genetic edits I’ve made have been limited to plasmids and unguided genomic insertions. That limits the kinds of cells I can work with and the types of work I can do.”

When synthetic biology’s most prominent scientists gathered last year in Napa to debate the ethical implications of genetic engineering, Nobel prize-winning molecular biologist David Baltimore lamented in his opening remarks that the simplicity of Crispr has been overhyped.

“It’s not something you can do in a garage,” he said.

He was wrong.

Last year, a former NASA researcher raised more than $65,000 on Indiegogo to create and sell DIY Crispr kits, suggesting in a YouTube video that his NASA lab could be recreated “on a kitchen table.” This month, Genspace, a community DIY bio lab in Brooklyn, began offering Crispr workshops, spurred by the demands of a “Crispr craze” among DIY biologists.

Cocioba is currently plotting his first Crispr experiment: knocking out the gene in Oxalis corniculata (a.k.a. sourgrass) that can cause kidney stones for people and animals that eat too much of it. Willy Wonka, he told me, is his inspiration. Wonka may have been a little nuts, but he dedicated his life to engineering fantastical new things to give to the world.

“I want to make white plants, blue plants, glowing plants, plants that when you touch them they curl up, all kinds of things,” Cocioba said. His current obsession is genetically engineering a blue rose—none of the other blue roses on the market, he says, are truly “cerulean blue.” But his ultimate goal is to be taken seriously as a scientist. He wants to make useful discoveries, engineer interesting plants and publish his work.

Just as a bunch of engineers and computer hobbyists in a garage ushered in the modern era of personal computing, it could very well be biohackers like Cocioba that lead the way to the future of genetic engineering—that is, if somebody doesn’t try to stop them first.

Cocioba’s tiny laboratory is cramped, but it has an expansive view of the Manhattan skyline. When I first visited, I looked out the window and immediately thought about a different city (London) and a more traditionally trained scientist (Alexander Fleming). Fleming discovered penicillin in 1928, basically by accident. While trying to find a cure for Staphylococcus, he went on vacation and forgot to sterilize his petri dishes or close the window. He returned to find that a cure had literally blown in, in the form of the common mold Penicillium notatum. His carelessness sparked the revolution of modern antibiotics and saved millions of lives.

Accidents happen all the time in science. Sometimes it’s the result of being sloppy, like that time drunk physicists discovered that red wine increases superconductivity. Sometimes it’s just good fortune, as with the discovery of Crispr: researchers in the 1980s and again in 2012 were looking for something else entirely when they made the discoveries that led to the development of the gene-editing technique.